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Abstract
Gravitational lensing is a natural phenomenon often used in the study of dark matter. 
Numerical  studies  of  gravitational  lensing  often  make  use  of  the  Fast  Fourier 
Transform to relate mass density and image distortions. However, such convolution 
calculations  have  undesired  effects  on  their  results  that  must  be  understood  and 
corrected.  Two  mass  density  models  are  presented  here  to  demonstrate  such 
inaccuracies.

Introduction
According to the currently accepted model of the structure and evolution of the universe, 
known as the Concordance Model, dark matter accounts for roughly 25% of the total energy 
density of the universe and about 85% of all matter. Though constituting such a large portion 
of the universe, dark matter has eluded more direct probes its distribution until recent years, 
as dark matter  interacts  too weakly to be seen in any wavelength of the electromagnetic 
spectrum with current instruments.  However, gravitational lensing solves the problem of 
studying matter that cannot be seen. 

Gravitational lensing uses measurements of distortions of background images to understand 
the distribution of foreground mass between the observer and the background sources. Image 
distortion occurs either as isotropic image focusing, known as convergence, or anisotropic 
stretching,  called shear.  Lensing situations can be broken down into three groups: strong 
lensing,  in  which  image  distortions  are  noticeable  as  multiple  images  and  rings,  weak 
lensing,  in  which  image  distortions  are  only  noticeable  through  statistical  analysis  of 
ellipticities over a large set of objects, and microlensing, in which strong lensing occurs but 
images cannot be resolved.

Both numerical simulations and observational studies of weak gravitational lensing often rely 
on  the  numerical  technique  of  Fast  Fourier  Transform (FFT).  However,  FFT  has  some 
restrictions that must be understood when used to understand gravitational lensing results. 
Kaiser & Squires 1996 compare different methods of numerical techniques and demonstrate 
the noisiness in numerical results produced with FFT. In order to understand some of the 
effects FFT has on lensing simulations, two test cases are presented here, for which analytical 
results exist for comparison.  

Overview of Lensing Properties
Though the gravitational effects of mass had been studied according to Newton’s Law of 
Universal Gravitation since the late 18th century, the full extent of gravity’s influence on 
space and time, the latter being a quite important breakthrough, was not fully understood 
until  gravity  was  put  into  the  context  of  space-time  distortion  under  Einstein’s  General 
Theory of Relativity. One result of the new theory of gravitation is that gravity bends the 



path of light rays, not just matter. Therefore, a foreground mass will distort the image of a 
background object if the light rays pass sufficiently close to the foreground mass. 

Lensing can be understood in a couple of ways. First, once could study the individual light 
rays  to  measure  the  angle  of  deviation  from the  original  path  that  the  foreground  mass 
imparts on the passing rays. This angle is known as the deflection angle. This method is quite 
convenient for reproducing distorted images and is simple to setup and evaluate numerically2. 
However,  another  understanding  of  lensing  proves  a  better  match  with  observational 
techniques.

Image  distortion  can  be  directly  understood  through  convergence  and  shear.  Such  a 
description has advantages over deflection angles. First, shear, or a reduced form of shear, is 
directly  measured  in  astrophysical  images,  such  as  those  taken  by  the  Hubble  Space 
Telescope. Therefore, even when used in a theoretical manner, one is rooted in observational 
technique, helping to bridge the possible experimental-theoretical gap. Another advantage to 
shear is its connection, though indirect, to convergence. 

Convergence is directly proportional to the projected mass density of the foreground mass. 
Therefore,  if  one  could  measure  the  convergence,  a  2-dimensional  mass  density  profile 
would be obtained automatically.  Convergence,  represented by the Greek letter  kappa,  is 
given by the relationship,

(1),

where   represents  the  mass  density  and   is  the  so  called  critical  density,  a  scalar 
function  of  the  background  and  foreground  redshifts.  Variables   and    are  the  2-
dimensional coordinates; this naming convention will be used throughout the paper.

Shear is a measure of the change in ellipticity of an image. This quantity can be measured in 
lensing images of galaxies. In fact, weak lensing has only been recently studied due to the 
fact that one must be able to gain statistics on a large ensemble of galaxies, for which there is 
little distortion and the original ellipticity is not known. One natural question then follows: 
how do you measure shear if you do not know the original ellipticity? First, there is no reason 
to assume ellipticities of separated galaxies are correlated. Therefore, the average ellipticity 
should  be  zero.  Secondly,  the  distortion  of  images  tends  to  align  the  semi-major  axis 
tangentially to a circle drawn around a peak in the mass density. Therefore, a collection of 
tangentially aligned galaxies suggest a  concentration of mass.  These shear  measurements 
then can be related back to the convergence, and therefore the mass density.

All  lensing quantities,  including deflection angle,  can be related to a scalar field defined 
throughout  the lensing plane,  known as the lensing potential.  This is  analogous to  more 
familiar gravitational and electrostatic potentials. For a given potential, deflection angle is the 
gradient and convergence is half of the Laplacian. Shear, however, is a combination second 
derivatives of the potential given in two components,



(2)

(3),

where shear and potential are represented by Greek letters gamma and psi, respectively3.

Shear Simulation
With numerical  shear  values  readily  available  for  arbitrary mass  distributions,  one could 
easily study various mass profiles,  fitting such distributions with observational data.  It  is 
therefore useful in the study of dark matter within galaxies and galaxy clusters to have such 
numerical shear maps.

As was previously discussed, for a given foreground mass distribution, there exists a scalar 
lensing potential, describing the gravitational distortion effects on background images. Both 
mass  density,  via  convergence,  and shear  are  combinations  of  second derivatives  of  this 
lensing potential. The relationship between convergence and shear can be seen more clearly 
with the use of Fourier Transforms. This can be done by defining the potential in terms of a 
Fourier transform,

(4)

where tilde represents  a function in Fourier  space,  with conjugate  components,  generally 
referred to as wave numbers,  k 1 and k 2 . With this definition of the potential, differentiation 
becomes multiplication in Fourier space, as the only factor containing “x” in the right hand 
side of Equation 4 is the exponential function. Convergence and shear can then be related to 
each  other  in  a  linear  way,  when calculations  are  preformed in  Fourier  space.  With  the 
computational technique of discrete Fourier transformation using the Fast Fourier Transform 
algorithm4, the computationally costly calculation over the entire grid can now be performed 
in a relatively quick manner, O(N log N). 

In the FFT method, mass particles are distributed on a grid according to the given mass 
distribution. In the calculations presented here, convergence values are calculated directly for 
each point on the grid, since distributions presented here, in order to verify computational 
veracity, are always analytical. Since the FFT method requires an N by N convergence grid, 
there  is  no need to leave some points  empty or estimated by binning particles when the 
distribution is known. 

After the convergence grid is created, the grid is transformed via the FFT. These transformed 
values are then multiplied by the appropriate wave numbers, a function which is generally 
referred  to  as  the  kernel.  It  is  worth  noting  that  some FFT algorithms,  such as  the  one 
described in  Numerical Recipes4, give Fourier conjugate values arranged in order from the 
zero frequency to the highest  positive frequency then from second most  negative to just 
below zero. Therefore, one must be careful when using such an algorithm that the correct 
wave numbers are used for each transformed value. One solution to this possible source of 



error is to simultaneously transform the kernel function from its real-space corresponding 
function. Doing this extra transformation insures a correct correspondence of wave numbers, 
via an inner product of the two transforms, while at the same time only costing additional 
computing time of O(N log N). Finally, the inverse Fourier transform of this product gives 
the shear values in the lensing plane, once correctly normalized. 

Two  mass  distributions,  which  have  analytical  shear  values,  are  presented  with  FFT 
calculated shear values, a uniform elliptical distribution and a Singular Isothermal Ellipse 
(SIE)5. Figures 1 and 2 show the results of the uniform ellipse and SIE, respectively.  Both 
sets of calculations are preformed at background and foreground redshifts of 0.7 and 0.3, 
respectively.  The  total  mass  of  the  uniform ellipse  is   Solar  Masses,  with  pixel 
lengths  representing  0.39  arcseconds.  The  Singular  Isothermal  Ellipse  is  distributed 
according to the relation, 

(5).

Here the values of alpha and epsilon are 13 arcseconds and 0.3, respectively, in agreement 
with literature5. Also grid sizes were chosen to be 52 arcseconds wide.

Figure 1. The convergence and simulated shear values for the uniform ellipse. These calculations are 
preformed at background and foreground redshifts of 0.7 and 0.3, respectively. Grid positions are listed in 
pixels, with 1 pixel equaling 0.39 arcseconds.



Figure  2.  The  convergence  and  simulated  shear  values  for  the  Singular  Isothermal  Sphere.  These 
calculations are preformed at background and foreground redshifts  of  0.7 and 0.3, respectively.  Grid 
positions are listed in pixels, with the grid width equaling 52 arcseconds.

Result Verification
Anytime numerical simulations are used to represent physical phenomena, one must ensure 
results agree with actual physical values. Both distributions presented here were chosen for 
that purpose, since they have clear analytical shear functions. 

Figure 3. Lines of equal deflection angle values for a uniform ellipse with a ratio of semi-major to semi- 
minor axes of 10. This particular calculation was performed at a redshift of 0.3 as well.



Uniform elliptical mass distributions have deflection angles that form ellipses of equal value, 
confocal with the mass distribution6. An example of such a lens is given in Figure 3. With the 
deflection angles known, one can calculate the inverse magnification, which is also directly 
related to  the shear  and convergence3.  This  comparison can be used to show correlation 
between the analytical and numerical results. Another advantage to the inverse magnification 
comparison is the fact that outside of the mass distribution, only the shear contributes, as the 
convergence vanishes. Both analytical and numerical values of the inverse magnification are 
shown in Figure 4. 

Figure  4.  Numerical  inverse  magnification  calculations  for  two  different  resolutions  with  analytical 
values. The upper images are the numerical (left) and analytical (right) values. The lower images show 
overlays  of  double  resolution  (left),  in  blue,  and  combined  analytical  and  numerical  values  (right). 
Distances on the axes in the analytical plot are in terms of the semi-major axis length. Axes lengths in 
numerical results are in pixels values, where 1 pixel = 0.39 arcseconds. 



Each inverse magnification plot has three contour lines for inverse magnification values of 0, 
0.3 and 0.6, where the zero value is shown by the inner most contour and 0.6 is the outer 
most contour.  The zero-value contour corresponds to the so called critical  curves,  where 
magnification  diverges.  The  top  two  images  in  Figure  4  show the  numerical  (left)  and 
analytical (right) results. The axes of the numerical results are measured in pixels, where one 
pixel equals 0.39 arcseconds, whereas the axes of the analytical results are in units of the 
semi-major axis length. For better comparison, the bottom images show overlays of different 
computation  parameters.  The  left  image  shows  the  influence  of  resolution  on  the  FFT 
computation,  where the blue curves were produced with double the resolution of the red 
curves. The right image overlays the top two images of Figure 4. 

From these results, one can see a few setbacks of the FFT method of shear calculation. The 
numerical/analytical overlay image shows the FFT method has problems at both the grid 
boundary and a mass density boundary. All numerical results show the outline of the mass 
ellipse traced out by the critical curve. However, this result is less problematic, as such a 
sharp edge does not exist in galaxy clusters to be studied. 

The  grid  boundary problem,  on the  other  hand,  is  critical.  The  0.3 and 0.6  lines  of  the 
numerical/analytical overlay image show the FFT calculation results in an underestimate of 
the shear values in the case of the uniform ellipse. As will be more strongly reinforced with 
the SIE, this effect is believed to be due to a grid boundary problem associated with the FFT. 
The mass to shear relationship assumes a periodic mass function. The convergence clearly is 
not periodic. As a result, the edges are incorrectly affected by the opposite side of the grid. A 
potential solution to this problem is discussed later.



Figure 5. The ratio of numerical shear to analytical values for the Singular Isothermal Ellipse. 
The left image is for the initially presented shear values and the right image was produced at 
double resolution. The bottom image shows an overlay of the two images, demonstrating the 
slight improvement of increased mass resolution.

Similar results are presented for the Singular Isothermal Ellipse(SIE). Figure 5 compares the 
numerical  and analytical  results  of the FFT calculation for the SIE. The contour lines in 
Figure 5 show the ratio of numerical shear to analytical shear. The upper right frame was 
calculated with the same total mass, but with double the resolution of the left image. In both 
resolution cases, the FFT results in inaccuracies near the boundary, with this effect being 
more pronounced along the semi-minor axis. For comparison, the lower image in Figure 5 
shows the middle portion of the overlay of the two images. Outside of this area, the contour 
plots  are  identical.  However,  this  section  of  the  overlay  shows  that  the  increased  mass 
resolution does increase the area of near identical numerical and analytical values, since the 
higher resolution curve is moved towards the grid boundary, shown with the fainter curves. 
One might notice a second area of inaccuracy in the center of the images. This divergence is 
expected as the convergence function is singular near the center.

Discussion
Though a common method of calculation in gravitational lensing, convolution of mass with 
the Fast Fourier Transform has certain problems associated with it. Any sharp edge brings 
about alternating under- and over-estimating errors. As previously mentioned, this problem is 
less of an issue in real lensing studies as such a sharp edge is not realistic. However, the grid 
boundary problem is a systematic calculation issue. This calculation, using the convolution of 



mass,  is  based on the convolution function,  which assumes a periodic convergence.  One 
solution to this problem is the use of zero padding. Extending and then filling the edges of 
the convergence with zeros prior to convolution moves the periodic boundary problems to 
the edge which is no longer part of the mass being studied. The benefits of zero padding are 
alluded to in the uniform ellipse plots, where most of the grid is in fact zero. However, zero 
padding  the  convergence  now  introduces  long  wavelength  inaccuracies  which  must  be 
filtered out. Furthermore, the grid size has been increased, often suggested to be double in 
size, therefore reducing the efficiency of the calculation. Since speed is a motivating factor in 
using the FFT method, increasing the computational burden while not gaining any resolution 
should perhaps be an indicator that the FFT method may need to be altered or replaced.

One  possible  solution  is  a  more  direct  computation  of  shear  by  summing  particle 
contributions  to  shear  and convergence,  weighted  by proximity.  Aubert  et  al  2007 show 
promising  results  with  this  method.  By  summing  over  smoothed  particle  contributions, 
increased precision is gained in shear, convergence and deflection angle calculations. One 
drawback  to  this  method  is  the  calculation  time.  In  contrast  to  the  FFT  method,  the 

summation method scales on order of , where  is the number of particles and 
 is the number of points being calculated. However, modern computing methods make this 

less  of  an issue,  with  computing  clusters  becoming more  affordable  for  universities  and 
internet distributing computing bringing free parallel computing to any user with a computer 
and an internet connection8.
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